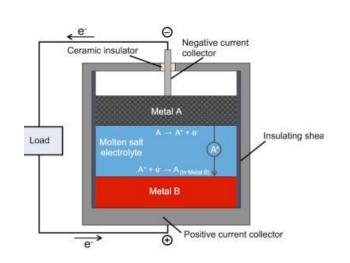
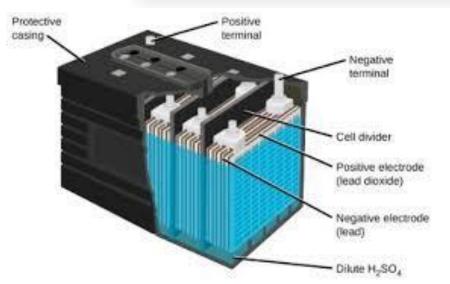

Batterie ricaricabili: diverse tipologie


- Elettrodi reattivi (Pd, Zn, Cu,...)
- Intercalazione di ioni (Li+; Na+;...)
- Sali fusi (NaS; Na/Ni-NaCl; CaSb...)
- Redox in flusso (V; Fe; ...)
- Metallo-Aria (Li-O2; Zn-O2; Fe-O2;...)



Storage elettrochimico: schema di una generica cella

Una batteria è un sistema di celle elettrochimiche connesse in serie/parallelo, capaci di convertire

Energia elettrica <-> **Energia chimica**

La tensione prodotta dipende dalla chimica utilizzata. Le reazioni chimiche coinvolte sono ossido-riduzioni (red-ox).

X. Luo et al / Applied Energy 137 (2015) 511-536

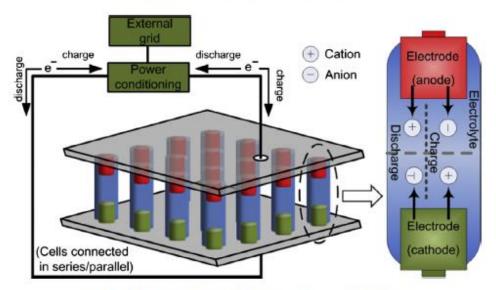
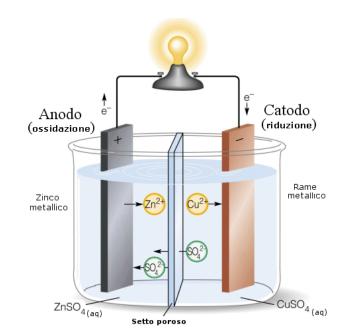



Fig. 7. Schematic diagram of a battery energy storage system operation.

Ogni cella contiene 2 elettrodi, un elettrolita conduttivo, una membrana di separazione.

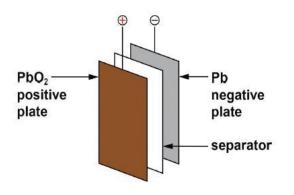
In carica, la batteria riceve corrente dagli elettrodi ed attiva reazioni **red-ox sulle superfici.**

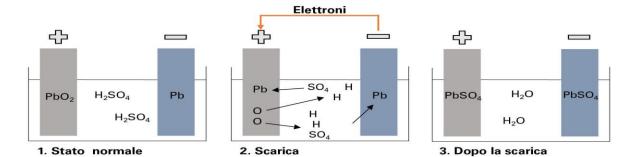
In scarica, si inverte la polarità ed avvengono le reazioni inverse, che producono corrente agli elettrodi.

Batterie Piombo-Acido (1859)

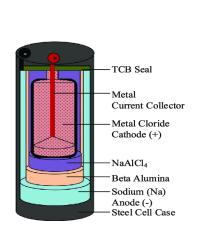
Gli elettrodi sono **metal-Pb** (-) e **PbO**₂ (+), immersi in una soluzione di acido solforico H_2SO_4 (2 V).

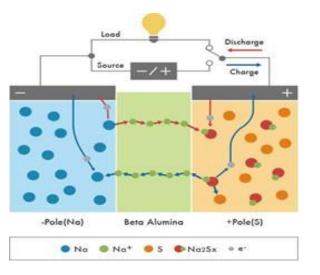
Si sono imposte nel mercato su taglia portatile per i costi contenuti e le buone prestazioni:

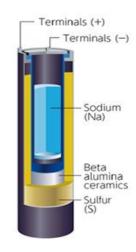

- alta capacità (10 kAh);
- energia specifica modesta (30 Wh/kg);
- alta efficienza (80%);
- basso costo.


Ma...

- il Piombo presenta tossicità acuta (recupero consapevole)
- Hanno la tendenza a formare PbSO₄ cristallizzati sugli elettrodi.

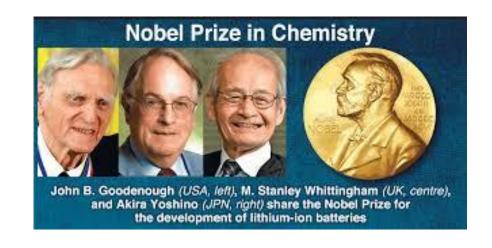

Scarica: Pb + PbO₂ + 2H₂SO₄ → 2PbSO₄ + 2H₂O


Carica: 2PbSO₄ + 2H₂O → Pb + PbO₂ + 2H₂SO₄



Batterie ai sali fusi: Na/S

- ➢ Gli elettrodi sono mantenuti ad alta T > 300°C (2V) con un separatore ceramico (Al₂O₃). Zolfo liquido è corrosivo e richiede materiali speciali. Sodio liquido tende a bruciare a contatto con aria e acqua.
- Energia specifica alta (240 Wh/kg);
- Bassa capacità, alto ingombro;
- Efficienza molto alta (90% senza il consumo termico);
- Lungo tempo di vita (15y);
- Bassi costi; riciclabile; affidabile.
- Dal 2011, l'azienda elettrica NGK (Tsukuba-Japan) le adotta.
- Nel 2016, Mitsubishi Electric Corporation ha commissionato la più grande batteria ai sali fusi al mondo (Fukuoka-Japan).
- Nel 2018, Arabian Emirates hanno installato 108 MW.
- BASF li commercializza in Europa.
- In Italia, in Campania, c'è un investmento Deferral per la rete.
- Dal 1985 esiste anche la batteria ZEBRA (Na/Ni-NaAlCl) che opera @ T=154 °C, con densità Energetica: 120
 Wh/kg e potenza specifica nell'ordine di 150 W/kg.
 In Italia FIAMM, PROYTEM, e FZSoNik (Svizzera).


$$2 \text{ Na} + x \text{ S} \rightarrow \text{Na}_2 \text{S}_x$$

Batterie Litio-ione (Li+)

La tecnologia è stata sviluppata negli anni 1970–1980 da John Goodenough, Stanley Whittingham e Akira Yoshino (**Nobel Prize 2019**) commercializzata dal 1991.

Record di densità di Potenza e di Energia specifica, ampia flessibilità con molte applicazioni possibili, dalla miniaturizzazione, al portatile, all'impiego domestico, ai veicoli, allo storage stazionario.

lithium-ion.

Batterie Li-ione punti chiave

Analisi SWOT

Strengths

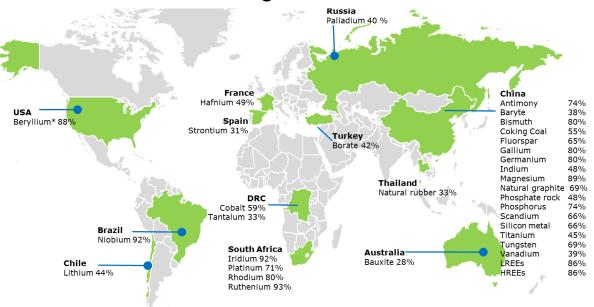
Alta Efficienza
Alta densità di energia
Bassa resistenza
Semplice algoritmo

Weaknesses

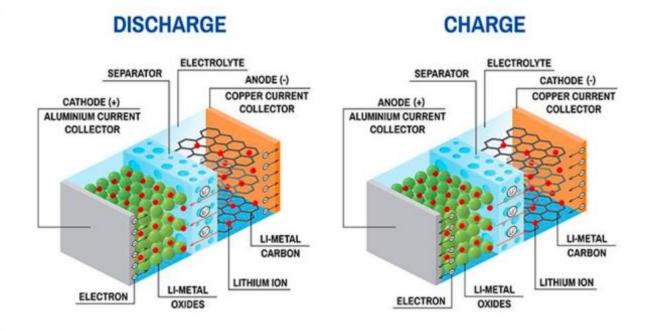
Degradazione elettrodi Infiammabilità Problemi ambientali Materiali critici Costo 200 €/kWh


Opportunities

Miniaturizzazione Veicoli elettrici Molti operatori Emissioni limitate


Threats

Potenziale limite materiali critici Necessità di Gigafactories


Prezzo delle batterie Li-ione (USD/kWh – 2018)

Concentrazione Geografica dei materiali critici

Schema e proprietà di una cella Li-ione

Caratteristiche costruttive			
Elettrodo negativo	Grafite		
Elettrodo positivo	Litio-Nickel-Manganese-Ossido di Cobalto		
Energia specifica [Wh/kg]	150-220		
Energia specifica [Wh/l]	325		
Potenza specifica [W/kg]	500-3000		
Potenza specifica [W/I]	6500		
Range di tensione della cella [V]	3 – 4,2		
Temperatura operativa [°C]	-20/+55		
Roundtrip efficiency [%]	>95% (in condizioni operative)		
Tempo di risposta	millisecondi		
Rapporto potenza/energia	1:1 (high-energy) - 10:1 (high- power)		

Impiego domestico

L'impianto fotovoltaico con accumulo domestico <u>non conviene solo</u> se hai dei consumi non sufficienti a coprire la spesa per risparmiare sulla bolletta: <u>se consumi < 2000 kWh all'anno non conviene</u>, perché annualmente hai una bolletta < 400€/anno e il tempo di ritorno sull'investimento sarebbe troppo lungo.

2012 12 PV panels

3 kW

Sonnen LiFePO4 10 kWh 10.000€ 2022

9 PV panels

3 kW

LG Ni-Mn-Co 7 kWh 4.000€

Grandi impianti di storage stazionario con LiB

MOSS LANDING ENERGY STORAGE FACILITY (300MW/1200MWH) FROM DECEMBER 2020

Operator: Vistra (US retail electricity and power generation company)
Provider: TESLA; Location: Monterey Bay, California, USA

GATEWAY ENERGY STORAGE (250MW/250MWH)

Operator: LS POWER

Location: San Diego County, CA USA

Energy capacity will be further increased to

750MWh in 2022.

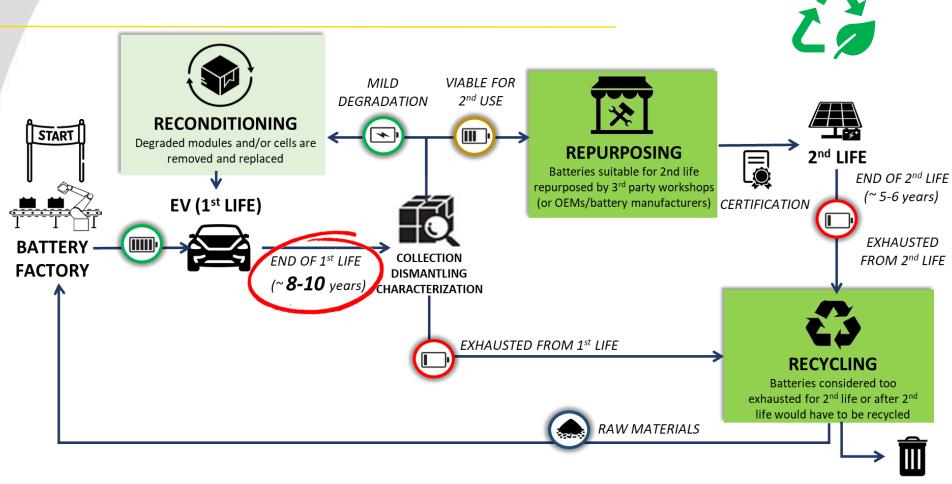
HORNSDALE POWER RESERVE (150MW /194 MWH)

Operator: NEON Provider: TESLA

Location: South Australia

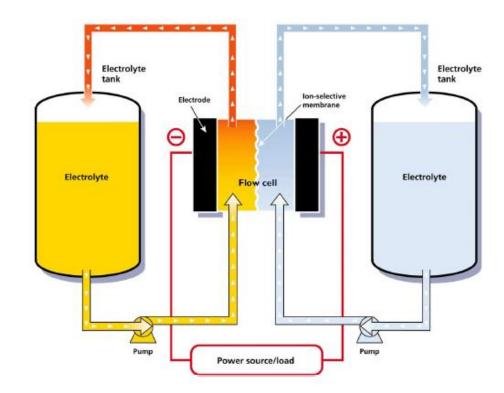
Florida Power & Light Co. (FPL) announced a 409MW/900MWh battery storage facility would begin operations in 2023.

The batteries will be charged by an existing solar power plant in Manatee County, Florida.

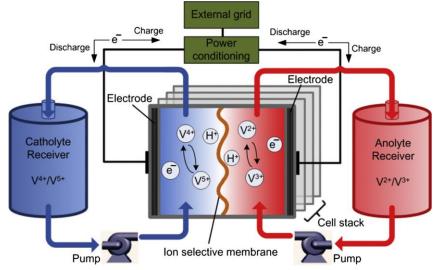

Il più grande al mondo...

Riciclo e riuso delle batterie LiB

Le LiB dismesse dai veicoli hanno ancora l'80% circa di capacità utile residua e possono essere riutilizzate in applicazioni che richiedono minore potenza;
Oppure smontate per il recupero dei materiali preziosi (Li, Co, Cu, Al,...).


E' importante sviluppare una catena del riciclo per una seconda vita o per un disassembling delle batterie.

Per questo è necessaria la collaborazione di più competenze (chimica, ingegneria, management) con partnership Industria-Università.



Batteria Redox in Flusso (Redox Flow Battery)

- Le specie elettro-attive sono elettroliti liquidi in solventi che fluiscono in 2 sistemi separati e reagiscono nelle celle elettrochimiche.
- I cicli di carica e scarica (cicli REDOX) avvengono sugli elettrodi ed i prodotti di reazione sono continuamente rimossi e stoccati in serbatoi esterni.
- Il vantaggio è aver disaccoppiato potenza ed energia: la potenza dipende dalle prestazioni della cella e dalle chimiche utilizzate; l'energia dipende dalle dimensioni dei serbatoi e dalla concentrazione delle specie attive.
- Le RFB non possono competere con le LiB in termini di potenza ma in termini di durata, sicurezza, materiali non critici e costi.

Vanadium Redox-Flow Battery (VRFB)

Structure of a vanadium redox flow battery

Cathode:
$$VO^{2+} + H_2O - e^- \xrightarrow{Charge} VO_2^+ + 2H^+ \quad E^\circ = 1.00 \; V$$

Anode:
$$V^{3+} + e^{-} \xrightarrow{\text{Charge}} V^{2+}$$
 $E^{\circ} = -0.25 \text{ V}$

Cell:
$$VO^{2+} + H_2O + V^{3+} \xrightarrow{Charge} VO_2^+ + 2H^+ + V^{2+}$$
 $E^{\circ} = 1.25 \text{ V}$

Si parte caricando i due comparti della cella con V4+ e V3+; in acqua acida.

In carica, il V4+ si ossida a V5+ ed il V3+ si riduce a V2+, scambiando elettroni con gli elettrodi;

In scarica, si inverte la polarità ed avvengono le reazioni opposte generando corrente agli elettrodi.

Il voltaggio dipende dalla differenza di potenziale imposta dalla chimica (1.25 V).

Prototipo di Batterie Redox in flusso (V-RFB)

Nel 2015 la SUMITOMO-Japan ha sviluppato il primo impianto dimostrativo di batteria in flusso da 2 MWh in Hokkaido, l'equivalente a garantire energia elettrica per 1000 case, per 4 ore.

E' un sistema robusto con una vita stimata a più di 20 anni e scarsa manutenzione.

Oggi la **SUMITOMO ELECTRIC** ha costruito un nuovo impianto da 17 MW/51 MWh connesso ad un parco eolico e solare.

Altre installazioni nel mondo (VRFB)

<u>YADLAMALKA ENERGY PROJECT</u> (2MW/8MWH) – announced in December 2020 and commissioning expected in 2021

Owner: Yadlamalka Energy

Provider: Invinity

Technology: Vanadium Redox Flow Battery

Location: Hawker, South Australia

Service: time shifting and frequency control ancillary services

South Australia

<u>DALIAN (100MW/400MWH) – UNDER construction</u>

Owner: local utility company + Rongke Power Provider: Rongke Power + UniEnergy Technologies

Technology: Vanadium Redox Flow Battery

Location: Dalian Province, China Service: Peak Shaving on the grid

VRFB sviluppo atteso al 2031

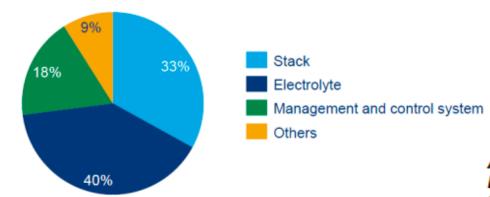
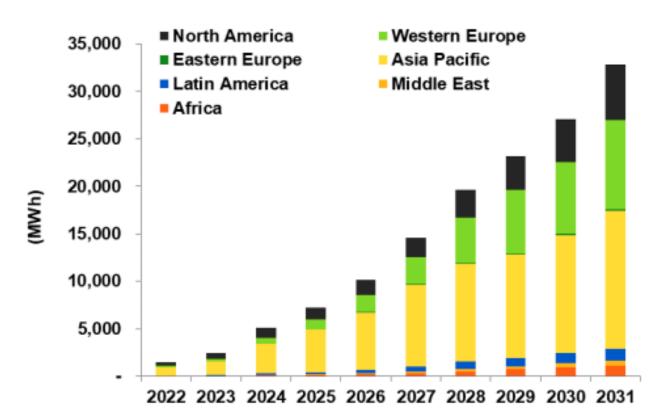



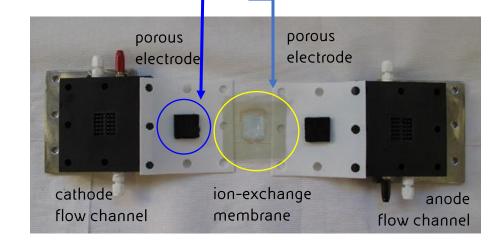
Figure 4-5: Typical VRFB cost breakdown [7].

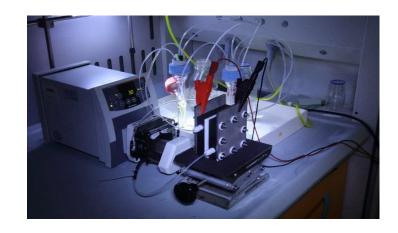
Annual Installed VRFB Utility-Scale and Commercial and Industrial Battery Deployment Energy Capacity by Region, All Application Segments, World Markets: 2022-2031

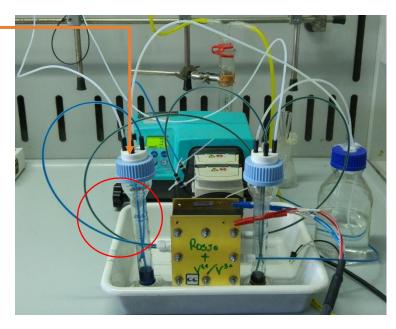
Redox Flow Batteries - Eni-R&D Novara

Attività sulle Redox Flow Batteries

- Per favorire la transizione verso le rinnovabili nei siti ENI si punta allo sviluppo di soluzioni di storage stazionario;
- Da anni si è avviato un progetto per sviluppare RFB innovative, anche basate su reattivi organici;
- Nuove specie chimiche sono studiate per sostituire i sali di V e sono state brevettate anche membrane innovative;
- Si fa ricerca in collaborazione con università e partners tecnologici, partecipando anche a progetti finanziati EU (StoRIES; StoreAGE).

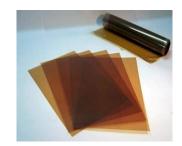

Brevetti:

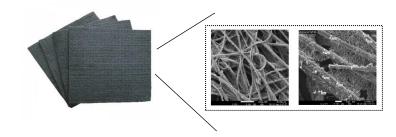

- New Organic electrolytes (EP3482441B1 – A. Tacca, A. Pellegrino)
- Zip-like membranes (WO2021019497A1– L. Meda, C. Gambaro, V. Di Noto, K.Vezzù, J. Sun)
- Modified Active Species



Attività sulle Redox Flow Batteries: scala di laboratorio

- Trovare elettroliti alternativi al vanadio
- Membrane per limitare il crossover
- Modifiche agli elettrodi





Caratterizzazioni disponibili

Separation membrane

Carbon Felts electrodes

Chemical-Physics characterizations:

- UV-Vis spectroscopy
- FTIR/Raman
- EPR
- SEM/TEM Microscopies
- AFM/STM
- ICP/Mass Analysis
- XRF

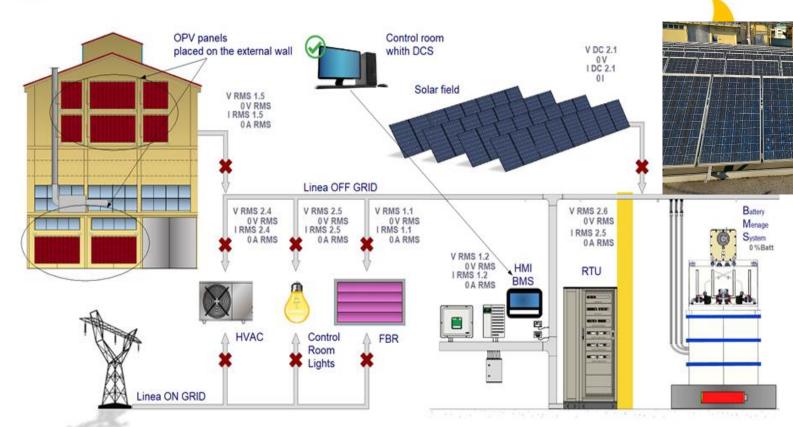
Electrochemical characterizations:

- Cyclic voltammetry
- Impedance measurements
- Static crossover in cell
- Reversible cycling in single cell

V-RFB su scala dimostratore

40 celle stack

3 kW; 24 kWh



eni

Synoptic panel solar field, OPV e DFB

26/02/2018

Grazie per l'attenzione!

